Seguinos en las redes

Innovación

Un estudio israelí demuestra la importancia del diagnóstico temprano del autismo

Agencia AJN.- Dos tercios de los niños diagnosticados con autismo a la edad de dos años y medio mejoran considerablemente, en comparación con solo el 23 por ciento de los niños a los que se les diagnostica cuando son mayores.

Publicada

el

Child sitting alone in living room

Agencia AJN.- Un estudio israelí descubrió que un diagnóstico temprano del autismo puede mejorar drásticamente las perspectivas de un niño.

La investigación encontró que dos tercios de los niños diagnosticados con autismo a la edad de dos años y medio mejoran considerablemente, en comparación con solo el 23 por ciento de los niños a los que se les diagnostica cuando son mayores.

El profesor Ilan Dinstein de la Universidad Ben Gurión, autor principal del estudio revisado por pares, dijo que los niños fueron monitoreados para mejorar en dos o más puntos en la escala de ocho puntos que mide la gravedad del autismo dentro de los dos años posteriores al diagnóstico.

«Hemos observado una diferencia muy significativa, con niños diagnosticados antes que tienden a estar más integrados socialmente y con mejores habilidades de comunicación», dijo a The Times of Israel. “Y tomar nota de esto debería tener un impacto muy fuerte en la política”.

“Es una llamada de atención para los tomadores de decisiones de salud pública sobre la importancia del diagnóstico temprano. Envía un mensaje contundente de que ya no podemos quedarnos al margen mientras las personas pierden un tiempo valioso durante el cual los niños podrían estar recibiendo tratamiento porque las familias están esperando un diagnóstico”.

En muchos países, incluido Israel, si los padres no buscan un neurólogo o psicólogo privado, pueden esperar meses para recibir un diagnóstico de autismo. Además, educar a los padres sobre cómo detectar el autismo no es una prioridad importante, y las personas a menudo pierden señales en el desarrollo de sus hijos que podrían conducir a un diagnóstico oportuno.

Dinstein dijo que, si bien muchas personas asumen que es de sentido común que un diagnóstico temprano es mejor, no ha habido suficientes datos claros hasta ahora para documentar la importancia y llevar el punto a los responsables de las políticas de salud.

Esto se debe a que los estudios previos sobre el autismo han tendido a centrarse en niños que tenían tres años o más en el momento del diagnóstico. El Centro Nacional Azrieli para la Investigación del Autismo y el Neurodesarrollo, un proyecto dirigido por la Universidad Ben Gurión que encabeza Dinstein, tiene acceso a conjuntos de datos inusualmente grandes de niños que fueron diagnosticados tanto temprano como tarde.

Actualmente está ampliando su trabajo después de una inversión de 40 millones de NIS (13 millones de dólares). Sus datos rastrean a niños desde edades muy tempranas, ya que ejecuta una base de datos que contiene una gran cantidad de información, aportada con el consentimiento de los padres, sobre los desafíos y el progreso de los niños autistas israelíes.

«Estamos demostrando que los diagnósticos tempranos y la garantía de un tratamiento temprano tienen un impacto muy fuerte en el potencial de desarrollar habilidades sociales», dijo Dinstein. “Creemos que esta gran mejora se debe a la mayor plasticidad cerebral y flexibilidad conductual que es una característica fundamental de la primera infancia.

Innovación

Científicos israelíes desarrollan tratamiento experimental que mejora la supervivencia en casos de hemorragias graves

Publicado

el

Por

pexels-mart-production-7230835-1520×855

Agencia AJN.- Un nuevo tratamiento desarrollado por investigadores de la Universidad Hebrea de Jerusalem en conjunto con el Cuerpo Médico de las Fuerzas de Defensa de Israel (FDI) podría transformar por completo la atención médica de emergencia en situaciones de trauma severo, tanto en el ámbito militar como civil.

La investigación, publicada recientemente en la revista Scientific Reports, demostró que la activación de una proteína específica —conocida como PKC-ε (Proteína Quinasa C épsilon)— después del inicio de una hemorragia masiva puede triplicar las tasas de supervivencia.

El estudio, liderado por los doctores Ariel Furer y Maya Simchoni del Instituto de Investigación en Medicina Militar (proyecto conjunto entre la Universidad Hebrea y el Cuerpo Médico de las FDI), simuló un shock hemorrágico extrayendo el 35% del volumen sanguíneo de modelos animales. Al aplicar el tratamiento apenas cinco minutos después del inicio de la hemorragia, la supervivencia saltó de un 25% a un 73%.

La clave del tratamiento es que ayuda a estabilizar las funciones cardiovasculares: mantiene la presión arterial, el ritmo cardíaco y la capacidad del corazón para bombear sangre. Además, se observó una mejora en la función mitocondrial del tejido cardíaco, es decir, ayuda a que las células generen energía suficiente para resistir el daño y mantener los órganos funcionando.

“Las hemorragias masivas siguen siendo uno de los mayores desafíos en la medicina de emergencia, tanto en el campo de batalla como en accidentes civiles”, explicó Furer. “Este avance abre una nueva puerta para tratamientos que podrían cambiar radicalmente las tasas de supervivencia en situaciones críticas.”

Actualmente, el tratamiento estándar para este tipo de emergencias es la reposición de fluidos, pero este método muchas veces genera complicaciones adicionales y daños en los tejidos. El enfoque israelí con PKC-ε parece no sólo estabilizar al paciente, sino además proteger los órganos contra ese tipo de daño secundario.

A pesar de los resultados alentadores, los investigadores subrayaron que es necesario avanzar hacia ensayos clínicos para confirmar su efectividad en humanos. Sin embargo, el potencial es enorme, sobre todo para el uso por parte de equipos de primeros auxilios y médicos en zonas de combate o en escenarios de catástrofes.

Con este desarrollo, Israel vuelve a posicionarse a la vanguardia de la medicina de emergencia, aportando conocimiento y soluciones que podrían salvar miles de vidas en todo el mundo.

Fuente: Israel21.

Seguir leyendo

Ciencia

Científicos israelíes: Modelos generales de inteligencia artificial son mejores que los específicos para médicos para diagnosticar casos complejos

Publicado

el

Por

Pharmacist using mobile smart phone for search bar on display in pharmacy drugstore shelves background.

Agencia AJN.- Un equipo de investigadores de la Universidad Ben-Gurión del Néguev ha desarrollado una nueva base de datos para evaluar la capacidad de los modelos de propósito general de inteligencia artificial (IA) para diagnosticar casos médicos complejos, según The Press Service of Israel (TPS-IL).

Sus hallazgos, presentados ante la Asociación para el Avance de la Inteligencia Artificial en Filadelfia, sugieren que modelos como el GPT-4o podrían ser más efectivos que los diseñados específicamente para la medicina.

Tradicionalmente, los modelos de propósito general de IA se han probado en casos médicos más simples, como preguntas de exámenes o enfermedades comunes, pero no en los casos complejos del mundo real que los médicos suelen enfrentar. Para subsanar esa deficiencia, los investigadores crearon una base de datos de 3.562 informes de casos médicos del BMC Journal of Medical Case Reports, que incluye descripciones detalladas de casos médicos inusuales y sus diagnósticos. Los casos se presentaron mediante preguntas abiertas y de opción múltiple, simulando escenarios de diagnóstico reales.

Los resultados fueron sorprendentes: GPT-4o superó a modelos médicos como Meditron-70B y MedLM-Large en el diagnóstico de esos casos complejos. GPT-4o logró una precisión del 87,9% en preguntas de opción múltiple y del 76,4% en preguntas abiertas, superando a los especializados.

“Nos sorprendió ver que los modelos generales, como GPT-4o, tuvieran un mejor rendimiento que los adaptados para la medicina. Mostramos que los modelos de lenguaje de gran tamaño pueden utilizarse para diagnosticar casos médicos complejos”, afirmó Ofir Ben-Shoham, uno de los investigadores.

La base de datos CUPCase que creó el equipo podría convertirse en una herramienta valiosa para probar nuevos modelos de IA en el futuro. Está abierta al público y puede ampliarse con casos adicionales a medida que se desarrollen nuevos modelos.

“El objetivo era crear un sistema que pudiera evaluar la eficacia de los modelos lingüísticos para diagnosticar casos complejos del mundo real, no solo los comunes”, afirmó el estudiante de doctorado Uriel Peretz.

El doctor Nadav Rapoport, otro miembro del equipo de investigación, explicó que diagnosticar casos complejos puede ser un proceso largo e incierto, lo que genera retrasos y mayores costos para los pacientes. La base de datos CUPCase, al proporcionar casos reales detallados, puede ayudar a acelerar ese proceso y mejorar la atención del paciente.

La investigación tiene diversas aplicaciones prácticas en el ámbito sanitario, principalmente al mejorar la velocidad y precisión de los diagnósticos médicos.

Modelos de IA como GPT-4o podrían ayudar a los médicos a diagnosticar casos médicos complejos con mayor rapidez, reduciendo los retrasos en el diagnóstico y mejorando los resultados de los pacientes.

La base de datos CUPCase, que incluye una colección de casos del mundo real, puede servir como una valiosa herramienta de apoyo a la toma de decisiones clínicas, ayudando a los médicos a tomar decisiones más precisas, especialmente en casos difíciles o poco frecuentes.

Además, el modelo de IA podría facilitar la formación de profesionales médicos, ofreciendo un recurso interactivo para el aprendizaje de procesos diagnósticos complejos.

Las herramientas basadas en IA también podrían ampliar el acceso a apoyo diagnóstico de expertos en zonas desatendidas, donde los especialistas pueden ser limitados. En entornos de cuidados críticos, los modelos de IA podrían proporcionar asistencia diagnóstica en tiempo real.

Seguir leyendo
Banner para AJN 300×250

Más leídas

WhatsApp Suscribite al Whatsapp!